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Classical and Quantum Problems

• TQFT with special properties (toric code and generalizations)

• Effect of time-correlated noise on quantum q-state systems

• Entanglement, relaxation of quantum spin systems

• Quantum algorithms on classical computers

• Algorithms for fast relaxation of classical disordered spin models

Is there a unifying statistical formalism ?
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• Stochastic Field Theory n−point functions
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Lessons from the past III: Witten TFT - Kontsevich
RMT

• Correlation functions in TFT and the matrix Airy function

A(X) ≡
∫
dMeiTr[M

3

3 −XM ], M hermitian

• The topological amplitude is directly related to the Jones polynomial
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Matrices: non-commuting random variables

• A a non-commutative algebra over C, 1 ∈ A, with functional φ : A →
C, φ(1) = 1

• Example: A = bounded operators over Hilbert space H, ξ ∈ H, ||ξ|| = 1,

φ(A) = 〈ξ|A|ξ〉.

• Example: A = von Neumann algebra over H, with φ = Tr.

• Free non-commutative r.v.: if φ(Ai) = 0,

φ(Ai1Ai2 . . . Aik) = 0, Aij 6= Aij+1
.
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Computing with free random variables

• Brave new world ...

• Gaussian distribution in free probability theory is held by the semi-circle
distribution (Wigner-Dyson) ρ(λ) =

√
a2 − λ2

• Poisson distribution: the free correspondent is a distribution related to
the Marchenko-Pastur (elliptical law) ρ(λ) =

√
(λ− a)(b− λ)

• The free Cauchy distribution is the Cauchy distribution itself

• Free Cramér-Rao inequality for free Fisher entropy

Random N ×N matrices become free in the large N limit !
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Wegner-Efetov model for 2D Anderson localization

• d−dimensional lattice (cubic ...), n states (orbitals) at each state
|x, i〉, i = 1, ..., n

• Hamiltonian for nearest-neighbor interaction and on-site disorder:

H = H0 +Hd, H0 =
∑

n,〈x,y〉

tx,y|x, n〉〈y, n|, Hd =
∑
x,i,j

f ij|x, i〉〈x, j|

• Matrix f i,j can be Hermitian, Orthogonal, Symplectic, based on
symmetries of the system

• Random matrices with symmetry group SU(1, 1)
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(1 + γ)σx
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x
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y
n+1 + hσz

n

• Probability of having a macroscopic subset of “flipped” spins:
...1111100000001111...

P [0, `] ∼ det[I −K`], K`(x, y), sine kernel on L2[0, `]
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Overview

• Non-commutative generalization of probability theory

• When free, becomes proper tool to study systems of non-abelian anyons

• Efficient method for simulating quantum dynamics on classical variables
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